美国食品药品监督管理局(FDA)推荐的产品特定指南(PSG)对促进和指导通用药物产品开发有助于。为了评估PSG,FDA评估者需要花费大量时间和精力来手动从参考列出的药物标签中手动检索吸收,分布,代谢和排泄(ADME)的支持性药物信息。在这项工作中,我们利用最先进的预训练的语言模型自动将来自FDA批准的药物标签的药代动力学部分中的ADME段落标记,以促进PSG评估。我们通过微调从变形金刚(BERT)模型的预训练的双向编码器表示,采用了转移学习方法来开发新颖的ADME语义标签应用,可以自动从药物标签中自动检索ADME段落而不是手动工作。我们证明,对预训练的BERT模型进行微调可以胜过传统的机器学习技术,实现高达11.6%的绝对F1改进。据我们所知,我们是第一个成功应用BERT来解决ADME语义标签任务的人。我们进一步评估了使用一系列分析方法,例如注意力相似性和基于层的消融,进一步评估了预训练和微调对BERT模型整体性能的相对贡献。我们的分析表明,通过微调学到的信息集中在BERT的顶层中的特定于任务知识上,而预先训练的BERT模型的好处来自底层。
translated by 谷歌翻译
长尾分布式数据的分类是一个具有挑战性的问题,它遭受了严重的班级不平衡,因此只有几个样本的尾巴阶级表现不佳。由于样本的匮乏,在将预审计的模型转移到下游任务时,在尾部类中学习对于微调尤其具有挑战性。在这项工作中,我们简单地修改了标准微调,以应对这些挑战。具体而言,我们提出了一个两阶段的微调:我们首先用类平衡的重新释放损失微调了预审计模型的最后一层,然后我们执行标准的微调。我们的修改有几个好处:(1)仅通过微调模型参数的一小部分,同时保持其余部分未触及,从而利用了预告片; (2)它允许模型学习特定任务的初始表示;重要的是(3)它可以保护学习尾巴的学习免于模型更新期间处于不利地位。我们对文本分类的两类和多级任务的合成数据集进行了广泛的实验,以及用于ADME的现实世界应用(即吸收,分布,代谢和排泄)语义标记。实验结果表明,所提出的两阶段微调既优于传统损失,又超过了微调,并且在上述数据集上进行了重新调整损失。
translated by 谷歌翻译
在低标签制度中,解决图像的多标签识别(MLR)是许多现实世界应用的一项艰巨任务。最近的工作学会了文本和视觉空间之间的一致性,以补偿图像标签不足,但由于可用的MLR注释量有限,因此失去了准确性。在这项工作中,我们利用数百万辅助图像文本对预测的文本和视觉特征的牢固对齐,并提出双背景优化(dualCoop)作为部分标签MLR和零发射MLR的统一框架。 DualCoop用类名来编码正面和负面的上下文,作为语言输入的一部分(即提示)。由于DualCoop仅在验证的视觉语言框架上引入了非常轻松的开销,因此它可以迅速适应具有有限的注释甚至看不见的类别的多标签识别任务。对两个挑战性低标签设置的标准多标签识别基准测试的实验证明了我们方法比最新方法的优势。
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
我们介绍了日常桌面对象的998 3D型号的数据集及其847,000个现实世界RGB和深度图像。每个图像的相机姿势和对象姿势的准确注释都以半自动化方式执行,以促进将数据集用于多种3D应用程序,例如形状重建,对象姿势估计,形状检索等。3D重建由于缺乏适当的现实世界基准来完成该任务,并证明我们的数据集可以填补该空白。整个注释数据集以及注释工具和评估基线的源代码可在http://www.ocrtoc.org/3d-reconstruction.html上获得。
translated by 谷歌翻译
许多开放世界应用程序需要检测新的对象,但最先进的对象检测和实例分段网络在此任务中不屈服。关键问题在于他们假设没有任何注释的地区应被抑制为否定,这教导了将未经讨犯的对象视为背景的模型。为了解决这个问题,我们提出了一个简单但令人惊讶的强大的数据增强和培训方案,我们呼唤学习来检测每件事(LDET)。为避免抑制隐藏的对象,背景对象可见但未标记,我们粘贴在从原始图像的小区域采样的背景图像上粘贴带有的注释对象。由于仅对这种综合增强的图像培训遭受域名,我们将培训与培训分为两部分:1)培训区域分类和回归头在增强图像上,2)在原始图像上训练掩模头。通过这种方式,模型不学习将隐藏对象作为背景分类,同时概括到真实图像。 LDET导致开放式世界实例分割任务中的许多数据集的重大改进,表现出CoCo上的交叉类别概括的基线,以及对UVO和城市的交叉数据集评估。
translated by 谷歌翻译
Previous works utilized "smaller-norm-less-important" criterion to prune filters with smaller norm values in a convolutional neural network. In this paper, we analyze this norm-based criterion and point out that its effectiveness depends on two requirements that are not always met: (1) the norm deviation of the filters should be large; (2) the minimum norm of the filters should be small. To solve this problem, we propose a novel filter pruning method, namely Filter Pruning via Geometric Median (FPGM), to compress the model regardless of those two requirements. Unlike previous methods, FPGM compresses CNN models by pruning filters with redundancy, rather than those with "relatively less" importance. When applied to two image classification benchmarks, our method validates its usefulness and strengths. Notably, on CIFAR-10, FPGM reduces more than 52% FLOPs on ResNet-110 with even 2.69% relative accuracy improvement. Moreover, on ILSVRC-2012, FPGM reduces more than 42% FLOPs on ResNet-101 without top-5 accuracy drop, which has advanced the state-of-the-art. Code is publicly available on GitHub: https://github.com/he-y/filter-pruning-geometric-median * Corresponding Author. Part of this work was done when Yi Yang was visiting Baidu Research during his Professional Experience Program.
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.
translated by 谷歌翻译
Recent progress on vision-language foundation models have brought significant advancement to building general-purpose robots. By using the pre-trained models to encode the scene and instructions as inputs for decision making, the instruction-conditioned policy can generalize across different objects and tasks. While this is encouraging, the policy still fails in most cases given an unseen task or environment. To adapt the policy to unseen tasks and environments, we explore a new paradigm on leveraging the pre-trained foundation models with Self-PLAY and Self-Describe (SPLAYD). When deploying the trained policy to a new task or a new environment, we first let the policy self-play with randomly generated instructions to record the demonstrations. While the execution could be wrong, we can use the pre-trained foundation models to accurately self-describe (i.e., re-label or classify) the demonstrations. This automatically provides new pairs of demonstration-instruction data for policy fine-tuning. We evaluate our method on a broad range of experiments with the focus on generalization on unseen objects, unseen tasks, unseen environments, and sim-to-real transfer. We show SPLAYD improves baselines by a large margin in all cases. Our project page is available at https://geyuying.github.io/SPLAYD/
translated by 谷歌翻译